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Abstract

A dislocation dynamics (DD) model for plastic deformation, connecting the macroscopic mechanical properties to

basic physical laws governing dislocation mobility and related interaction mechanisms, has been developed. In this

model there is a set of critical reactions that determine the overall results of the simulations, such as the stress±strain

curve. These reactions are annihilation, formation of jogs, junctions, and dipoles and cross-slip. In this paper, we

discuss these reactions and the manner in which they in¯uence the simulated stress±strain behavior of fcc and bcc

metals. In particular, we examine the formation (zipping) and strength of dipoles and junctions, and e�ect of jogs, using

the dislocation dynamics model. We show that the strengths (unzipping) of these reactions for various con®gurations

can be determined by direct evaluation of the elastic interactions. Next, we investigate the phenomenon of hardening in

metals subjected to cascade damage. The investigated microstructure consists of small dislocation loops decorating the

mobile dislocations. Preliminary results reveal that these loops act as hardening agents, trapping the dislocations and

resulting in increased yield stress. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Constitutive modeling of deformation of metals un-

der various loading conditions depends critically on our

understanding of the relationship between the macro-

scopic mechanical properties and the underlying defect

sub-structures (e.g. point defect, dislocations, planar

defects, precipitates, etc.). Such structures can be highly

heterogeneous and in the case of linear defects include

dislocation cells, slip bands, microshear bands, persis-

tent slip bands and dislocation tangles, all of which are

critical to material properties [1±7]. Understanding how

these structures form and evolve and how they a�ect

work hardening is, perhaps, one of the most di�cult

tasks which is still rife with controversy. The main dif-

®culty has been in dealing with large numbers of dislo-

cations. For example, Kuhlmann-Wilsdorf [7] has

proposed that the structures can be understood as a

progression of low energy thermodynamic states with

something like a conventional phase transition taking

place between carpet structures and 3D cell structures at

the end of Stage II. However, Holt [8] proposed that

dislocation structure evolution can be viewed in the

spirit of spinodal decomposition by the introduction of

local densities of di�using dislocation populations. This

approach has been adopted in later models. In particu-

lar, Walgraef and Aifantis [9] developed a model of

dislocation patterning to describe the evolution of or-

dered structures in chemically reacting systems. In this

model, several types of dislocation populations are in-

troduced as density functions of position in space, with

the evolution determined by di�usion and reaction

terms. Although these reaction±di�usion schemes have

been successful in modeling 2D dislocation patterns,

they present a number of di�culties associated with

determination of model parameters and they do not yet

address realistic 3D dislocation con®gurations.

By viewing the dislocation structures problem as a

dynamical system, one can develop a number of discrete

models to understand the origin of dislocation structures

in deformed crystals. Although the method was initiated

over one decade ago, most of the original models were

two-dimensional and consisted of periodic cells each
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with dislocations of in®nite length. These 2D models

have provided some understanding of rules of interac-

tion and glide mechanisms of dislocations. However,

since these 2D models are based on the idealization of

in®nite dislocation lines, a number of important mech-

anisms and dislocation interactions are either not in-

cluded in these models or accounted for in an implicit

manner at best. These mechanisms include cross-slip,

junction and jog formation, multiplication by Frank±

Read sources, and line tension associated with self-en-

ergy. These di�culties have been addressed in a pio-

neering 3D dislocation model which was developed by

Kubin and his co-workers [10] and Canova et al. [11].

Their model is based on the discretization of dislocation

curves into a succession of pure edge and pure screw

dislocation segments of fundamental length, corre-

sponding to the discretized lattice. More recently, a new

approach for 3D dislocation dynamics has been estab-

lished by Zbib, Hirth and Rhee [12±14]. In this approach

arbitrarily curved dislocations are decomposed into

piecewise continuous arrays of mixed straight segments

in a continuum crystal and long range interactions are

treated using superdislocations, allowing for the treat-

ment of large dislocation densities.

The 3D discrete dislocation model (mico3d) devel-

oped at WSU simulates the dynamical behavior of large

numbers of dislocations of arbitrary shapes, interaction

among groups of dislocations in 3D space and, there-

fore, the behavior of prescribed cell walls. In the model

there is a number of rules and models for short-range

reactions which, in turn, have a decisive e�ect on the

predicted hardening and evolution of the structure.

These issues have been, recently, addressed by Rhee et

al. [13] who developed numerical rules for implementa-

tion into dislocation dynamics (DD) models to treat

short-range interactions by introducing a critical force

criterion. In this paper, we investigate these reactions

and corresponding mechanisms that contribute critically

to work hardening during deformation using the dislo-

cation dynamics model. The main issues we address are

junction formation and strength through the process of

`zipping' and `unzipping', jog formation and strength,

and dipole strength. It is shown that the full dynamics of

these interactions can be explicitly captured via dislo-

cation dynamics simulations, where the dynamics of

these con®gurations is determined by direct calculation

of driving forces and internal stresses. The simulation

model is then utilized to provide possible explanations of

irradiation induced hardening in metals subjected to

cascade damage.

2. Basic equations

The complete description of the 3D dislocation model

(DD) can be found in [12±14]. Here we give a brief

outline of the main features of the model and basic

governing equations. The main problem is that of non-

linear interaction of a large number of curved disloca-

tions of arbitrary shapes. The crystal is treated as a

continuum with dislocations restricted to move on crys-

tallographic slip planes. The model has been developed

for both fcc and bcc single crystals. For bcc single crys-

tals we consider the {1 1 0}á1 1 1ñ and {1 1 2}á1 1 1ñ slip

systems which are the most close packed slip systems and

both kinds are active at low temperatures. The

{1 2 3}á1 1 1ñ slip systems are less close packed and be-

come active at high temperatures. For fcc single crystals,

{1 1 1}á0 1 1ñ slip systems are considered, and hence

glissile dislocation lines can only lie on the {1 1 1} planes.

Each plane contains a number of dislocation curves

and loops whose con®gurations are approximated by a

series of straight segments of mixed character as illus-

trated in Fig. 1(a). There are a number of advantages in

using mixed segments of arbitrary length and orienta-

tion:

1. Segment length depends upon the local curvature.

Dislocation curves with small curvature are segment-

ed with long segments, while those with large curva-

ture are meshed with shorter segments (typical

segment size could vary from 50b to a few hundred

b, where b is the magnitude of the Burgers vector).

Fig. 1. (a) Discretization of a dislocation curve. (b) Dislocation

bend or junction.
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2. With mixed segments of arbitrary length and orienta-

tion, dislocation interactions such as junctions with

any arbitrary con®guration can be formed.

3. Mobility and strength of dislocation reactions, such

as jog motion through dislocation bow-out at the

jog and junction destruction by the process of `unzip-

ping' can be readily captured.

4. The stress ®eld of arbitrary mixed straight dislocation

segments in an isotropic medium is given in a closed

form.

2.1. Long range interaction and self-force

The stress ®eld of a ®nite dislocation segment is given

by Hirth and Lothe [15] and deWit [16]. The interaction

force per unit length (Peach±Koehler force `PK force') a

given segment exerts on a remote segment is evaluated at

the center of the remote segment. This approximation is

valid for two segments that are far apart from each other

since the variation of the interaction force along the

segment length is very small. For adjacent segments

forming a bend the interaction force and self-force (or

line tension) varies signi®cantly along the dislocation

line; it is singular at the bend and decays as 1=r.

Therefore, we treat this case in a more rigorous way as

described by Zbib et al. [12]. The solution for the total

interaction force between any two adjacent segments

shown in Fig. 1(b) is developed following the same lines

described by Hirth and Lothe [15] for a dislocation bend

with the same Burgers vector. Here, the two segments

could belong to the same dislocation line with the same

Burgers vector, or they could have di�erent Burgers

vectors as in the case of dislocations meeting at a junc-

tion node. The result is an average glide force per unit

length given by

F2 � l
4p

ln
L
q

� �
bz1bz2

coshÿ 1

sinh

�
ÿ b2

z2

m sinh cosh
1ÿ m

� bx1bz2

m
1ÿ m

� bx2bz2

m
1ÿ m

2sin2h
ÿ ÿ 1

�
� bx1bx2

coshÿ 1

1ÿ m� �sinh
� b2

x2

m sinh cosh
1ÿ m

� by1by2

coshÿ 1

1ÿ m� � sinh

�
: �1�

The normal force component out of page is given by

Fn � l
4p 1ÿ m� � ln

L
q

� �
by1bx2

m sinh� coshÿ 1

sinh

�
� bx1by2

coshÿ cos2hÿ m sin2h
sinh

� bz1by2 1� ÿ m� 1� ÿ cosh� � by1bz2m 2� ÿ cosh�

ÿ bz2by2mcosh� bx2by2m sinh

�
: �2�

Here l is the elastic shear modulus, m the Poisson's ratio,

L the dislocation segment length, and q the core pa-

rameter. For the case of general bend of two segments

only (ignore segment `3' in Fig. 1(a)) b1 � b2 and Eqs.

(1) and (2) reduce to the expressions given in [15]. In

passing we emphasize that Eq. (1) accounts explicitly for

the self-force which gives rise to the so called `line ten-

sion'.

2.2. Dislocation mobility

The motion of each dislocation segment is deter-

mined by ®rst evaluating the total PK force which arises

from all other dislocation stress ®elds and the applied

stress, such that

F i �
XN

j�1

j6�1

j6�i�1

j6�iÿ1

rD
j

�
0BBBBBBB@ � ra

�
� bi

1CCCCCCCA� ni � Fi;i�1 � Fi;iÿ1; �3�

where N is the total number of dislocation segments, rD
j

the stress tensor from a remote segment j, ra the applied

stress tensor, ni is the sense vector of segment i, and Fi;i�1

and Fi;iÿ1 the interaction forces between segments i and

i� 1, and i and iÿ 1, respectively, as computed from

Eqs. (1) and (2). The e�ective shear stress sei on segment

i is given by

sei � fgi

b
ÿ rf ; �4�

where fgi � jF i � m̂ij is the magnitude of the glide force

per unit length with m̂i being a unit vector in the direction

of slip, and rf is the friction stress arising from lattice

damping e�ects. The velocity vector of segment i is given

by mi � mgim̂i where the basic relation for mgi is discussed

below.

The relationship between the glide velocity and the

glide force per unit length (or e�ective shear stress) is

temperature-dependent. At high temperatures, disloca-

tions (pure edge, pure screw, and mixed ones) move by

the phonon drag and climb mechanisms and the driving

e�ective force is athermal. There are a number of rela-

tions for the dislocation glide velocity mg, including re-

lations of power law forms and forms with an activation

term in an exponential or as the argument of a sinh

form. Often, the simple power law form is adopted for

expedience, e.g. mg � ms�se=ss�m, where ms and ss are

constants. In a number of cases of pure phonon/electron

damping control or of glide over the Peierls barrier a

linear form of that equation, m � 1, predicts the results

very well. The linear form has been theoretically pre-

dicted for a number of cases as reviewed by Hirth and

Lothe [15] leading to
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m� _mgi � mgi=Mgi � Fg;

i � e �for edge mixed dislocation�
or s �for screw dislocation�; �5�

where m� is the e�ective mass and Mgi the dislocation

mobility which, in general, depends on the character of

the dislocation, especially at low temperatures. In bcc

single crystals, at low temperatures a pure screw dislo-

cation has a rather complex 3D core structure, resulting

in a high Peierls barrier which may be overcome by

stress-assisted thermal activation. This leads to a rela-

tively low mobility for screw dislocations while the

mobility of mixed dislocations is very high [17].

In a more general treatment, the inertia term should

be included in Eq. (5). However, recent studies have

shown that the rise time needed for a dislocation to

reach a steady state is of the order of 10ÿ10 s for a dis-

location velocity below 0.4 times the shear-wave velocity

[18]. A typical time step in computer simulation is of the

same order, making it possible to neglect the inertia

term, especially for low mobility dislocations in bcc

metals. The inertia term, however, plays an important

role for fast moving dislocations in fcc metals where the

mobility is a few orders of magnitude higher than that in

bcc.

The result of the above formulation is a set of non-

linear ®rst-order di�erential equations governing the

motion of the dislocation segments. The motion of the

dislocations gives rise to plastic strain DP and spin WP

which are calculated from

Dp � ÿ1

V

XN

i�1

��vgi � ni� 
 bi`i�sym;

Wp � ÿ1

V

XN

i�1

��vgi � ni� 
 bi`i�anti-sym;

�6�

where `i is the dislocation segment length, vgi is the ve-

locity of the segment, bi the Burgers vector, ni the line

vector, and V is the volume of the simulated crystal.

2.3. Short range interactions

For short-range interactions, basic theories which

describe the underlying physical mechanisms at the core

level may be rigorously included into the 3DD model.

Such an approach may be important when investigating

the local interaction between two dislocations over small

distances (close to the core). However, this approach is

not desirable numerically or even important when

dealing with relatively large numbers of dislocations on

a large scale (10s of lm). Numerically, It is more e�cient

to develop rules based on a rigorous investigation of the

two-dislocation interaction problem. Then, we imple-

mented these rules directly into the 3DD model for

large-scale simulations. These rules are:

Rule 1: Critical force criterion `F P F c' for short-

range interaction.

Rule 2: Critical force criterion for annihilation.

Rule 3: Critical-angle criterion for junction forma-

tion; hAB6 hc
jn.

Fig. 2. (a)±(c) Junction formation `zipping' with stress of 20 MPa applied in the [0 0 1] direction. (d)±(f) Junction destruction `un-

zipping' with reversed stress (ÿ30 MPa). Dislocation `1': b=
���
3
p ��111��110�; dislocation `2': b=

���
3
p �11�1��1�10�. Sessile junction is in the

[0 0 1] direction with Burgers vector 2b=
���
3
p �010� ( 2b=

���
3
p

is the magnitude of the junctionÕs Burgers vector).
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Rule 4: Critical-angle criterion for jog formation;

hAB P hc
jg.

Rule 5: Critical-angle criterion for jog strength;

hjg6 hc
jgs.

Here hAB is the angle between two dislocation segments,

hjg the bow-out angle at a jog, and hc
jn; hc

jg and hc
jgs the

critical values for junction formation, jog formation and

jog strength, respectively. Each of these rules involves a

critical value that determines the interaction. We suggest

that numerical values for hc
jn and hc

jg should be deter-

mined from a rigorous investigation of the two-dislo-

cation interaction problem, similar to that performed by

Huang et al. [19] for the dipole problem. For now,

however, we have estimated these values for a number of

simpli®ed case as reported in [13]. Values for the critical

force, jog strength, as well as dislocation mobility maybe

quanti®ed explicitly by means of simulations at the core

level, such as MD simulations [20]. These simulations

could be very extensive since one would have to examine

a number of possible combinations of the Burgers vec-

tors and slip planes.

3. Basic reactions and strengthening mechanisms

In the following discussion we consider the defor-

mation of a single crystal Ta (bcc crystallographic

structure) at room temperature for which

b � 2:86� 10ÿ10 m (here b is the magnitude of the á1 1 1ñ
type Burgers vector), l � 70:7 GPa, m � 0:339,

rf � 3� 10ÿ5l.

3.1. Junction formation ± zipping

The process of dislocation junction formation has

been addressed schematically by many authors, but no

quantitative analysis has been performed except in the

recent work of Bulatov et al. [21]. We studied this phe-

nomenon using the DD dislocation dynamics model.

The process begins when two attractive dislocations

gliding on intersecting planes (Fig. 2(a)) meet at the line

of intersection and combine if the reaction is favorable

(Fig. 2(b)). In the DD simulations this is captured

through explicit evaluation of the system dynamics,

Fig. 3. (a) Formation of partial junctions and unzipping with

stress increased (in the same sense) to 50 MPa. (b) A pileup of

dislocations at a fully extended junction (the stress was not

increased beyond 40 MPa).

Fig. 4. (a) Fully extended junction formed as in Figs. 2(a)±(c),

then the stress is reversed incrementally until the junction is

completely destroyed as in Fig. 2(f). (b) The corresponding

critical stress to break the junction as a function of L.
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i.e. there is no need to check if FrankÕs rule (i.e.

jb1 � b2j2 < jb1j2 � jb2j2) is satis®ed before combining

the segments. If the two segments are attractive (Rule 1)

and their energy minimized by formation of a junction,

they would approach each other, align themselves into a

parallel con®guration (Rule 3), react and form a junc-

tion. Once initiated, the junction extends along the line

of intersection by the process of `zipping' as anticipated

by the Friedel±Saada model [22] (Fig. 2(c)). The

con®gurations shown in Figs. 2(a)±(f) and 3(a), (b) are

typical examples of junctions formed using DD

simulations.

3.2. Junction destruction ± `unzipping'

The extension or destruction of the junction takes

place by the motion of the dislocation node at the triple

point along the line of intersection as anticipated by the

Friedel±Saada model [22] and the recent MD simula-

tions of Bulatov et al. [21]. This process is captured by

DD simulations as shown in Figs. 2(d)±(f) and 3(a), (b).

Thus, as also pointed out by Bulatov et al. [21], the force

driving nodal stacking-fault energy determines the

strength and fate of the junction.

The process of junction formation and destruction is

a balance between applied stress, dislocation interaction

forces and core energy around the junction node. As the

reversed stress increases to a critical value the forces on

the two dislocation nodes increase and move the nodes

towards each other along the line of intersection. In the

simulation, once the junction is formed and reaches a

stable con®guration as shown in Fig. 4(a), the applied

stress is reversed incrementally. Due to the line tension

e�ect, a higher stress is required to overcome the elastic

interaction energy and core energy to unzip the junction.

Fig. 4(b) shows the e�ect of line tension on the critical

stress to unzip and break a junction. We can deduce

from the ®gure that for a longer dislocation branch from

the source (L) less force is required to overcome the

elastic energy barrier for the unzipping process to occur.

This is due to the fact that the force associated with line

tension is larger with larger L, resulting in a higher self-

force at the junction node.

3.3. Jog strength

Jogs can move by creating point defects such as

vacancies or interstitials. The strength of these defects is

balanced by the total line tension of the two dislocation

Fig. 5. (a), (b) Pinned dislocations with jogs. (c) Critical stress

required to bow out and propagate the jogged dislocations as a

function of jog critical angle (strength).
Fig. 6. (a) Two dislocations with opposite Burgers vectors

emanating from two Frank±Read sources on parallel planes

separated by distance h, forming a dipole `lock' at distance d=2.

(b) Critical stress to unzip the dipole.
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segments surrounding a jog, leading to the following

expression for the critical bow-out angle hc
jgs for a jog to

move [15]

cos
hc

jgs

2

� �
� W

lb3
; �7�

where W is the interstitial or vacancy formation energy.

To investigate the e�ect of the critical jog angle on the

corresponding critical stress for jog motion, we carried

out DD simulations for the con®guration shown in Fig.

5. The result is obtained by considering a simple Frank±

Read source with a jog located in the middle. For a given

hc
jgs the stress is increased incrementally until the jog

begins to move. Fig. 5(a) shows a snapshot of the

simulation result after the jog has moved from its

initial position. As the critical angle decreases, high-

er stress is required to move the jog as shown in Fig.

5(c). However, further decrease in the angle (less than

60°) does not result in a signi®cant increase in the critical

stress. This is because once the bow-out reaches the

unstable con®guration as in the Frank±Read source, less

stress is required for the dislocation to wrap around the

source. In the absence of a jog, the critical stress

required to bow-out a Frank±Read source of length

6000b or 3000b is 11 MPa or 23 MPa, respectively. This

value is, indeed, the minimum threshold for the critical

stress to bow-out the Frank±Read source with a very

weak jog, corresponding to a critical jog angle ap-

proaching 180°.

3.4. Dipole strength

Although models describing the dipole strength are

available, the dipole is usually assumed to be in®nitely

long. In our approach, dipole break occurs naturally if

the stress required to cause it is su�cient. Consider, for

example, the dipole which is formed by the bow-out of

dislocations from Frank±Read, as sources shown in Fig.

6(a). The strength of the dipole depends on the normal

separation h and the separation d between original

sources.

Fig. 6(b) shows the critical stress to unzip a dipole as

a function of the normal separation and the

separation between the original sources. For a constant

dipole separation h, a dipole with a smaller d value

requires higher stress to break. This is due to the

line tension from the dipole to the pinning point. For

larger d the curvature of the dislocation at the dipole

position is larger. This, in turn, results in a larger line

tension, making it easier to unzip the dipole, similar to

the case of junction unzipping. Furthermore, we note

that, due to the line tension, the critical shear stress to

Fig. 7. (a) DD simulation of double slip deformation in Ta. (b) [0 0 1] view. (c) [0 1 0] view. Simulation cell side size � 10 lm.
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break the dipole is much smaller than that predicted for

the case of two in®nite dislocation segments, which is

given by

sc � lb
8p�1ÿ m�

1

d
: �8�

4. Double slip deformation

In this section we present typical results of the de-

formation of single crystals. Fig. 7(a) shows a cubic cell

of side size 10 m. In this case, the simulated material is a

Ta single crystal whose properties are given in Section 3.

The crystal contains 50 Frank±Read sources distributed

randomly on the two slip planes (1 1 0) and ��110�, as

shown in Fig. 7. For each plane, there are two possible

Burgers vectors of the type á1 1 1ñ and, therefore, the

Burgers vector for each dislocation is assigned

randomly. The size of the dislocation sources (i.e. the

distance between the two pinning points in the Frank±

Read source) varies from 5000b to 8000b. This gives an

initial dislocation density of 1011 mÿ2. The load is ap-

plied along the [1 0 0] direction with a constant strain

rate of 10 sÿ1. The resolved shear stresses on both planes

are equal, activating both slip systems. The mobility of

edge and mixed dislocations is 102 (Pa s)ÿ1 and that of

screw ones is assumed to be smaller by one order of

magnitude. A snapshot of the dislocation substructure

after 163 000 iterations is shown in Fig. 7. As a result

of dislocation intersections, many jogs and junctions

form and their total number increases with further

deformation (the total number of jogs in Fig. 7 is

184). The simulation is performed for a jog critical

angle (strength) of 120°. The dislocation density in

Fig. 7 is 4.3 ´ 1011 mÿ2. In passing we point out that

using low strain rates, say in the order of 10ÿ4 sÿ1, would

be more consistent with typical experiments but this in-

troduces severe numerical limitations on the DD simu-

lations due to required integration time steps. However,

this numerical issue is currently being addressed.

Fig. 8 shows results obtained for a molybdenum

single crystal (bcc) deformed at room temperature with

loading applied along the [0 0 1] direction. The

simulation was performed for two cell side sizes, 30 lm

and 10 lm. For Mo: b � 2:725� 10ÿ10 m (for the á1 1 1ñ
Burgers vectors) l � 123 GPa, m � 0:305,

rf � 3� 10ÿ5l. The mobility of edge and mixed

dislocations is 103 (Pa s)ÿ1 and that of screw ones is

assumed to be 2.5 (Pa s)ÿ1. This estimate is based on the

experimental results of Prekel and Conrad [23]. The low

mobility of the screw segment results in a dislocation

substructure dominated by extended screw dislocations

as can be deduced from Fig. 8. This result is consistent

with typical TEM observations [23]. The corresponding

stress strain curve obtained from the DD simulations is

given in Fig. 9(a). We note that the serrations in the

curve have no physical meaning. They result from a

number of factors including, cell size, strain rate, and a

balance between the rate of annihilation of dislocations

at the boundary of the cell and dislocation production

from Frank±Read sources. In this respect, we point out

that these serrations can be smeared out by increasing

the size of the cell and increasing the initial dislocation

density. Nevertheless, we can extract from this ®gure a

value for the initial yield stress (for strain rate of 10 sÿ1)

of 70 MPa. Moreover, we also obtain an average strain

hardening of 2500 MPa (slope of the line shown in the

®gure). This strain hardening can be attributed mainly

to an increase in the number of jogs and in the

dislocation density during deformation. The change in

the dislocation density and number of jogs is given in

Figs. 9(b) and (c), respectively. The dislocation density

increases towards a saturation value as the strain

increases.

Fig. 8. (a) DD simulation of double slip deformation in Mo. (b)

[1 1 0] view. Simulation cell size � 30 lm.

H.M. Zbib et al. / Journal of Nuclear Materials 276 (2000) 154±165 161



5. Irradiation induced hardening

Finally, we consider the problem of irradiation

induced hardening problem in single crystals subjected

to cascade damage. In order to illustrate the possibility

of the DD simulation in providing rigorous explanation

of this phenomenon, we consider here the defect struc-

ture in irradiated Cu. The substructure after irradiation

consists of prismatic dislocation loops resulting from

collapse of vacancies or interstitials [24±29] (stacking-

fault tetrahedrons are not considered here but will be

included in future investigations). The main issue we

look into is the phenomenon of increased yield stress

resulting from irradiation. The subsequent phenomena

of yield drop and localized deformation will be investi-

gated later.

As pointed out by Trinkaus et al. [28], the irradiated

induced hardening cannot be rationalized in terms of

conventional dispersion hardening. However, this

phenomenon may be understood in terms of cascade

induced source hardening in which the dislocations are

considered to be locked by the loops decorating them.

Fig. 10(a) shows a dislocation decorated by loops as

described in [28]. For an in®nite dislocation, the critical

stress to unlock the dislocation is approximated by [28]

as

ry � 0:069
l

1ÿ m
b
L

d
y

� �2

: �9�

For de®nition of L, d, y see Fig. 10(b). For Cu with

l � 55 GPa, m � 1=3, L � 200b, d=y � 3=2, and Eq. (9)

yields ry � 61 MPa. However, when we consider a ®nite

dislocation pinned at both ends as in a Frank±Read

Source, the critical stress required to unlock the dislo-

cation depends upon the dislocation length as well as the

loop structure. This was shown using the DD simulation

(see Figs. 10(c) and (d)). In Fig. 10(c) the dislocation

becomes unstable when the stress reaches 100 MPa. In

this case the dislocation is not decorated with loops.

Fig. 9. DD results for double-slip deformation of a single crystal Mo with cell side size � 10 lm, Strain rate � 10 sÿ1. (a) Stress±strain

curve. (b) Dislocation density. (c) Number of jogs.
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However, when the dislocation is decorated with loops

the yield stress increases to 130 MPa, which is larger

than the value predicted by the simple model given by

Eq. (9), i.e. 61 MPa. This signi®cant di�erence can be

attributed to the line tension e�ect associated with the

dislocation bow-out which is captured by the DD sim-

ulations but not by the simple model.

The results just presented illustrate the basic

mechanism of hardening as captured by the DD

simulation. Full analyses with large dislocation densities

and various distributions are currently under way. Two

possible models are being analyzed: (1) sessile

dislocation loops decorating the dislocations model

(strong obstacles), and (2) the dispersions hardening

model with sessile dislocation loops (weak

obstacles) distributed randomly in the material.

Preliminary results are shown in Figs. 11 and 12. In

Fig. 11 we show a periodic distribution of sessile loops

decorating dislocations with a loop density of 1019 mÿ3.

For random distribution of loops (dispersion

hardening model), the dislocation percolates around the

obstacles (sessile loops) as shown by the DD simulation

and given in Fig. 12. Typical predicted stress±strain

curves using the decorated dislocations model are shown

in Fig. 13, revealing the e�ect of dislocation loops in

increasing the yield stress. It is emphasized that these are

very preliminary results and detailed analysis needs to be

performed before drawing any signi®cant conclusions.

Our attempt here is to develop a uni®ed model

combining the two mechanisms (loops decorating the

dislocations and random distribution of loops) which

would be more consisted with experimental

observations. However, these preliminary results illus-

trate the potential of the DD simulations in providing

answers to a number of critical questions related to

irradiation induced hardening and associated phenom-

ena. This includes, the correct scaling between the yield

stress and defect density, yield drop and localized

deformation, etc. Detailed analyses along these lines are

now underway.

6. Conclusions

Basic dislocation mechanisms that contribute to

yielding and strain hardening in metals have been in-

vestigated using dislocation dynamics. These mecha-

nisms include dipole formation, dislocation intersections

(junctions and jogs formation), and dislocation±irradi-

ation-induced-defect interactions (cascade damage).

These mechanisms were studied according to DD rules

and models that have been developed to treat short-

range reactions in bcc and fcc metals. The results suggest

that the DD simulation model provide a very valuable

tool for investigating critical dislocation phenomena

that control plastic deformation and hardening in met-

als. This type of microscopic modeling of deformation

provides a natural transition from the atomic scale to

the continuum crystal scale. It is suggested that, while

MD simulations may provide needed rules for disloca-

tion dynamics and interactions based on fundamental

principles, DD simulations can provide the most rigor-

ous means for understanding the impact of these critical

mechanisms from the dislocation length scale to the

macroscopic scale.

Fig. 11. Simulation of dislocations decorated with dislocation

loops in Cu. Cell side size � 10 lm, loop density � 1019 mÿ3.

Fig. 10. (a) Prismatic dislocation loops decorating a dislocation

in Cu. (b) Side view (y � stand-o� distance, d � 30b is the loop

size, L � 200b). (c) Dislocation propagating from a Frank±

Read source, which is not pinned by dislocation loops. (d)

Dislocation propagating from a Frank±Read source, which is

pinned by dislocation loops.
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Fig. 12. Dislocation percolation around loops (dispersion harening model). The stand-o� distance between the plane of the dislocation

and the plane of the loops is 5b.
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